Study of Λ_c decays at $\sec SIII$

Hajime Muramatsu
University of Minnesota

Measurements that I report today

```
\begin{array}{lll} - \ BF(\Lambda_c^+ \to p \ K^- \pi^+) & : \ PRL \ 116, \ 052001 \ (2016) \\ - \ BF(\Lambda_c^+ \to n \ K_S^0 \ \pi^+) & : \ PRL \ 118, \ 12001 \ (2017) \\ - \ BF(\Lambda_c^+ \to p \ (\pi^+\pi^-/K^+K^-)) : \ PRL \ 117, \ 232002 \ (2016) \\ - \ BF(\Lambda_c^+ \to p \ (\eta/\pi^0)) & : \ PRD \ 95, \ 111102 \ (R) \ (2017) \\ - \ BF(\Lambda_c^+ \to \Sigma^-\pi^+\pi^+\pi^0) & : \ just \ accepted \ to \ PLB \\ - \ BF(\Lambda_c^+ \to \Lambda \ X) & : \ Preliminary \ result \\ - \ BF(\Lambda_c^+ \to \Lambda \ e^+ \ \nu_\mu) & : \ PRL \ 115, \ 221805 \ (2015) \\ - \ BF(\Lambda_c^+ \to \Lambda \ \mu^+ \ \nu_\mu) & : \ PLB \ 767, \ 42 \ (2017) \end{array}
```


- The lightest charmed baryons
 - \rightarrow most of the charmed baryons will eventually decay into Λ_c . Important to know the decay properties of Λ_c .
- The golden mode, Λ_c⁺ → p K⁻ π⁺,
 often used to normalize many BFs.
 ⇒ Very important to determine the
 absolute BF.
- Also important input to Λ_b Physics as Λ_b decays dominantly to Λ_c .
- Total known measured BF is ~ 60%.

BESIII is at Institute of High Energy Physics (IHEP) in Beijing, China

BEPC II (Beijing Electron-Positron Collider II)

- Double ring collider.
- Operating since 2008.
- E_{beam} = 1-2.3 GeV.
 Optimal @ 1.89 GeV.

- Can fill up to 93 bunches in each ring w/ max current of 0.9A.
- Designed luminosity = 1×10^{33} cm⁻²s⁻¹ was achieved in April 2016!

BEPC II and BESIII

BESIII detector

- A powerful general purpose detector.

(2373)

旧

- Excellent neutral/charged particle detection/identification with a large coverage.
 - ✓ Precision tracking
 - ✓ Csl calorimeter
- ✓ PID via dE/dx & Time of Flight

 MDC: small cell & Gas:
 He/C₃H₂ (60/40), 43 layers
 σp/p=0.5%@1GeV, σdEdx=6%

 EMCAL: Csl crystal

MDC

Superconductor MG

3500

3800

MUC: 9 layers RPC (8 layers in Endcap) $\sigma_{R\Phi}$ =1.4~1.7cm

ΔE/E=2.5 @1GeV

Time of Flight σ_T=100ps in Barrel 110ps in Endcap

The e⁺e⁻ annihilation data sample

-Collected at E_{cm} = 4.599 GeV (CPC 40, 063001 (2016)). E_{cm} - 2×M_{Λc} = 26 MeV only!

-The integrated luminosity = 567 pb^{-1} (CPC 39, 093001 (2015)).

-Number of Λ_c produced ~ 0.2M (PRL 116, 052001 (2016)).

Other CHARM samples

- -D⁰⁽⁺⁾ sample: collected at $E_{cm} = 3.773$ GeV. The integrated luminosity = 2.93 fb⁻¹.
- -D_s samples:
 - ▶ collected at E_{cm} = 4.009 GeV. The integrated luminosity = 0.482 fb⁻¹.
 - ▶ collected at E_{cm} = 4.178 GeV.
 The integrated luminosity = 3.19 fb⁻¹.

for more details, see;

Bai-Cian Ke's talk (D_(s) hadronic decycays; right after this talk) and

Huijing Li's talk ((semi) leptonic decays of $D_{(s)}$ in Thursday morning session of Quark and Lepton Flavor).

Charm production @ mass threshold

Around E_{cm} ~ 4.6 GeV ,
 they are produced in pair.

$$e^+e^- \rightarrow \gamma^* \rightarrow \Lambda_c^{\pm} \overline{\Lambda}_c^{\mp}$$
.

 Typically, two ways to obtain the Λ_c yields:

- \diamondsuit Single Tag (ST): Reconstruct only one of the Λ_c -pair.
 - **→** Larger backgrounds.
 - **→** Higher efficiencies.
- **Double Tag (DT): Find both of them.**
 - **⇒**Smaller backgrounds.
 - **⇒**Smaller efficiencies.

Two popular variables

- Beam-Constrained-Mass; $M_{BC} = \sqrt{(E_{beam}^2 |\vec{p}_{\Lambda c}|^2)}$ $\vec{p}_{\Lambda c}$ is a reconstructed Λ_c 3-momentum.
 - Its resolution is dominated by the spread in E_{beam} (i.e., mostly independent of final states of Λ_c decays.
- $\Delta E = E_{\Lambda c} E_{beam}$
 - Almost independent of the measured M_{BC.}

BF(
$$\Lambda_c^+ \to p \ K^- \pi^+$$
)
PRL 116, 052001 (2016)

- First absolute BF measurement of this golden mode.
- Improved BF measurements of other CF hadronic modes.
- The BFs are extracted via the double-tag technique.
- For instance, for the case of $\Lambda_c^+ \to p \ K^- \pi^+$ and $\overline{\Lambda}_c^- \to \overline{\Lambda} \pi^-$:

$$BF(\Lambda_c^+ \to p \ K^- \pi^+)$$

$$= N_{DT}/N_{ST} \times \epsilon(\overline{\Lambda}_c^- \to \overline{\Lambda} \pi^-)/\epsilon(\overline{\Lambda}_c^- \to \overline{\Lambda} \pi^- \text{ and } \Lambda_c^+ \to p \ K^- \pi^+).$$

Notice that;

- ▶ BF is determined independent of $N_{\Lambda c \overline{\Lambda} c}$ and
- The systematic uncertainty due to the reconstruction of $\overline{\Lambda}_{c}^{-} \rightarrow \overline{\Lambda} \pi^{-}$ tend to be canceled in the ratio.

Extracting N_{ST} and N_{DT}

Look for 12 different tag modes.

- Very clean event environment!
- In the above DT case,
 summed over the 12 tag modes
- Simultaneously fit to the all $N_{DT} = N_{\Lambda c \overline{\Lambda} c} \times BF_{\overline{\Lambda} c \to tag} \times BF_{\Lambda c \to sig} \times \epsilon_{DT}$, while constraining $N_{\Lambda c \overline{\Lambda} c}$, taking into account correlations over modes.

 $N_{\Lambda c \overline{\Lambda} c}$ will be a byproduct.

/							
Mode	This work (%)	PDG 2014					
pK_{S}^{0}	$1.52 \pm 0.08 \pm 0.03$	1.15 ± 0.30 Belle					
$pK^-\pi^+$	$5.84 \pm 0.27 \pm 0.23$	5.0 ± 1.3 BF($\Lambda_c^+ \rightarrow p \ K^- \pi^+$) = (6.84±0.24 ^{+0.21} _{-0.27})%					
$pK_S^0\pi^0$	$1.87 \pm 0.13 \pm 0.05$	1.65 ± 0.50 PRL 113, 042002 (2014)					
$pK_S^0\pi^+\pi^-$	$1.53 \pm 0.11 \pm 0.09$	1.30 ± 0.35					
$pK^-\pi^+\pi^0$	$4.53 \pm 0.23 \pm 0.30$	3.4 ± 1.0					
$\Lambda\pi^+$	$1.24 \pm 0.07 \pm 0.03$	1.07 ± 0.28					
$\Lambda\pi^+\pi^0$	$7.01 \pm 0.37 \pm 0.19$	3.6 ± 1.3					
$\Lambda\pi^+\pi^-\pi^+$	$3.81 \pm 0.24 \pm 0.18$	2.6 ± 0.7					
$\Sigma^0\pi^+$	$1.27 \pm 0.08 \pm 0.03$	1.05 ± 0.28					
$\Sigma^+\pi^0$	$1.18 \pm 0.10 \pm 0.03$	1.00 ± 0.34					
$\Sigma^+\pi^+\pi^-$	$4.25 \pm 0.24 \pm 0.20$	3.6 ± 1.0					
$\Sigma^+ \omega$	$1.56 \pm 0.20 \pm 0.07$	2.7 ± 1.0					

-BF($\Lambda_c^+ \to p \ K^- \pi^+$) : Consistent? ... within ~2 σ ... Hopefully, the agreement would improve further in the near future.

(more data? new technique?)

- Also obtained $N_{\Lambda c \overline{\Lambda} c} = (105.9 \pm 4.8 \pm 0.5) \times 10^3$.
- Other BF($\Lambda_c^+ \rightarrow$ hadrons) are measured with improved precisions.

Observation of $\Lambda_c^+ \rightarrow n \ K_S^0 \ \pi^+$ PRL 118, 112001 (2017)

- First direct measurement Λ_c decay involving the neutron in the final state.
- A test of the isospin symmetry.

BF($\Lambda_c^+ \to nK_S^0 \pi^+$) = (1.82±0.23±0.11)% BF($\Lambda_c^+ \to nK^0 \pi^+$)/BF($\Lambda_c^+ \to pK^- \pi^+$)=(0.62±0.09)% (w/ BESIII's meas.) BF($\Lambda_c^+ \to nK^0 \pi^+$)/BF($\Lambda_c^+ \to pK^0 \pi^0$)=(0.97±0.16)% (w/ BESIII's meas.)

$\Lambda_c^+ \to p \pi^+ \pi^- \text{ and } p \text{ K}^+ \text{K}^-$ PRL 117, 232002 (2016)

- Single Tag method \Rightarrow relative BF w.r.t. the pK⁻ π ⁺ mode.
- First observation of single Cabibbo-suppressed (SCS) decay of $\Lambda_c^+ \to p \pi^+\pi^-$.
- Improved measurements on the SCS decays, $\Lambda_c^+ \to p \varphi$ and $\to p K^+ K^-_{non-\varphi}$.

Decay modes	$\mathcal{B}_{\text{mode}}/\mathcal{B}_{\text{ref}}$ (This work)	$\mathcal{B}_{\text{mode}}/\mathcal{B}_{\text{ref}}$ (PDG average)
$\Lambda_c^+ \to p \pi^+ \pi^-$	$(6.70 \pm 0.48 \pm 0.25) \times 10^{-2}$	$(6.9 \pm 3.6) \times 10^{-2}$
$\Lambda_c^+ o p\phi$	$(1.81 \pm 0.33 \pm 0.13) \times 10^{-2}$	$(1.64 \pm 0.32) \times 10^{-2}$
$\Lambda_c^+ \to p K^+ K^- \text{ (non-}\phi\text{)}$	$(9.36 \pm 2.22 \pm 0.71) \times 10^{-3}$	$(7 \pm 2 \pm 2) \times 10^{-3}$
_	$\mathcal{B}_{ ext{mode}}$ (This work)	$\mathcal{B}_{\text{mode}}$ (PDG average)
$\Lambda_c^+ o p \pi^+ \pi^-$	$(3.91 \pm 0.28 \pm 0.15 \pm 0.24) \times 10^{-3}$	$(3.5 \pm 2.0) \times 10^{-3}$
$\Lambda_c^+ o p \phi$	$(1.06 \pm 0.19 \pm 0.08 \pm 0.06) \times 10^{-3}$	$(8.2 \pm 2.7) \times 10^{-4}$
$\Lambda_c^+ \to p K^+ K^- \text{ (non-}\phi)$	$(5.47 \pm 1.30 \pm 0.41 \pm 0.33) \times 10^{-4}$	$(3.5 \pm 1.7) \times 10^{-4}$

$\Lambda_c^+ \rightarrow p \eta \text{ and } p \pi^0$ PRD 95, 111102(R) (2017)

- First evidence of the SCS decay, $\Lambda_c^+ \rightarrow p \eta$ (4.2 σ stat. significance).
- No signals seen in $\Lambda_c^+ \to p \pi^0$.

data in $M_{\pi^+\pi^-\pi^0}$ sideband

 $M_{\rm BC}$ (GeV/c²)

- Predicted BFs vary under different theoretical models (SU(3) symmetry and FSI).

	$\Lambda_c^+ \to p\eta$	$\Lambda_c^+ \to p\pi^0$	$\frac{\mathcal{B}_{\Lambda_c^+ \to p\pi^0}}{\mathcal{B}_{\Lambda_c^+ \to p\eta}}$
BESIII	1.24 ± 0.29	< 0.27	< 0.24
Sharma et al. [3]	$0.2^{a}(1.7^{b})$	0.2	$1.0^{a}(0.1^{b})$
Uppal et al. [4]	0.3	0.1-0.2	0.3 - 0.7
S. L. Chen et al. [12]	•••	$0.11-0.36^{c}$	•••
Cai-Dian Lü et al. [13]		0.45	

^aAssumed to have a positive sign for the p-wave amplitude of $\Lambda_c^+ \to \Xi^0 K^+$.

^bAssumed to have a negative sign for the p-wave amplitude of $\Lambda_c^+ \to \Xi^0 K^+$.

^cCalculated relying on different values of parameters b and α .

BF(
$$\Lambda_c^+ \to p \eta$$
) = (1.24±0.28±0.10)×10⁻³
BF($\Lambda_c^+ \to p \pi^0$) < 2.7×10⁻⁴ @ 90% C.L.

Observation of $\Lambda_c^+ \to \Sigma^- \pi^+ \pi^+ \pi^0$

Recently accepted to PLB

- First observation of CF decay, $\Lambda_c^+ \to \Sigma^- \pi^+ \pi^+ \pi^0$.
- and improved BF on $\Lambda_c^+ \to \Sigma^- \pi^+ \pi^+$.
- $\Sigma^{-} \rightarrow n\pi^{-}$ is reconstructed.

- Fit to $M_{n\pi^-}$ - M_n to extract the signal yields.

$$M_{n\pi^{-}} = \sqrt{(E_{\text{beam}} - E_{\pi^{+}\pi^{+}(\pi^{0})})^{2} - |\vec{p}_{\Lambda_{c}^{+}} - \vec{p}_{\pi^{+}\pi^{+}(\pi^{0})}|^{2}}$$

$$M_n = \sqrt{(E_{\text{beam}} - E_{\pi^+\pi^+\pi^-(\pi^0)})^2 - |\vec{p}_{\Lambda_c^+} - \vec{p}_{\pi^+\pi^+\pi^-(\pi^0)}|^2}$$

BF(
$$\Lambda_c^+ \to \Sigma^- \pi^+ \pi^+ \pi^0$$
) = (2.11±0.33±0.14)%

BF(
$$\Lambda_c^+ \to \Sigma^- \pi^+ \pi^+$$
) = (1.81±0.17±0.09)%

$V_{c_+} \rightarrow V + X$

~preliminary result~

- Current PDG : BF($\Lambda_c^+ \to \Lambda + X$) = (35±11)% Large rate, but also with large uncertainty...
- Double tag method: Tagged with two modes; $pK\pi$ and pK_S .
- Extract yields from 2D distributions in bins of $p_{p\pi}$ and $|\cos\theta|$, where θ is the polar angle w.r.t. the beam pipe.

- BF($\Lambda_c^+ \to \Lambda + X$) = (36.98±2.18)%
- Also, looked for;

$$\mathcal{A}_{\mathrm{CP}} = \frac{\mathcal{B}(\Lambda_c^+ \to \Lambda + X) - \mathcal{B}(\bar{\Lambda}_c^- \to \bar{\Lambda} + X)}{\mathcal{B}(\Lambda_c^+ \to \Lambda + X) + \mathcal{B}(\bar{\Lambda}_c^- \to \bar{\Lambda} + X)}.$$

- $A_{CP} = +0.02\pm0.06$.

- $\Gamma(\Lambda_c^+ \to \Lambda \mu^+ \nu_\mu)/\Gamma(\Lambda_c^+ \to \Lambda e^+ \nu_e)$

 $= 0.96 \pm 0.16 \pm 0.04$

BF($\Lambda_c^+ \to \Lambda e^+ \nu_e$) = (3.63±0.38±0.20)%

$BF(\Lambda_c^+ \rightarrow \Lambda e^+ \nu_l)$

PRL 115, 221805 (2015) and PLB 767, 42 (2017)

- Large rate via the CF transition, $c \rightarrow s l^+ v_l$.
- First absolute BF measurement!
- First measurement of its muonic mode!

Summary

- BESIII has improved various Λ_c BFs significantly and made measurements on some new decay modes as well based on $\sim 0.2 M \Lambda_c$.
- Will continue to study on Λ_c decays (other hadronic/semi-leptonic/rare decays).
- BESIII will keep collecting data in the next ~ decade.
- The current plan is to accumulate 1M Λ_c in total (along with 50M D 0 /50M D $^{+}$ /15M D $_{s}$ /10B J/ ψ).